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Abstract

Context Thermal traits likely mediate organismal

responses to changing thermal environments. As

temperatures increase, predicting species responses

will depend on understanding how thermal traits vary

within and among individuals and across time and

space.

Objectives We evaluated variation in thermal traits

within and among individual Mojave Desert Tortoises,

using GPS telemetry to quantify movement perfor-

mance and animal-mounted sensors to measure cara-

pace temperatures.

Methods We constructed thermal performance

curves (TPCs) based on movement velocity and

assessed variation in associated thermal traits by sex,

season, and proximity to roads. We also examined the

temperature-dependence of monthly home ranges and

the frequency of high-displacement movements.

Results Individuals exhibited lower variation in

upper critical temperatures (CTmaxE) than in other

traits, such as optimum temperatures and lower critical

temperatures for movement. All thermal traits varied

within individuals, either by season or proximity to

roads. We also found that monthly home range size

and the frequency of high-displacement movements

increased with the time individuals spent within their

optimal temperature range; however, this effect was

only apparent during months with greater rainfall.

Conclusions Low standing variation in CTmaxE sug-

gests that this trait may be constrained, limiting

potential changes through acclimation or selection in

warming environments. Our results demonstrate the
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modifying effect of rainfall on temperature-space use

relationships and highlight the dependence of thermal

traits on ecological and landscape contexts. Field-

based TPCs derived from GPS movement tracks

provided ecologically-relevant estimates of thermal

traits and suggest an informative framework for

unifying elements of thermal biology and spatial

ecology.

Keywords Thermal ecology � Mojave desert

tortoise � GPS telemetry � Thermal optimum � CTmax �
Body temperature � Space use � Roads

Introduction

For ectotherms, activity in space and time is often

limited by temperature. Temperature affects hours of

activity, speed of movement, efficiency of predator

escape and foraging, and reproductive effort, factors

that can affect population growth (Porter et al. 1973;

Huey and Stevenson 1979; Deutsch et al. 2008; Navas

et al. 2008; Sinervo et al. 2010). Recent work also

shows that species’ thermal biology is associated with

their responses to drivers of global change, such as

habitat loss, climate change, and disease (Huey et al.

2012; Valladares et al. 2014; Frishkoff et al. 2015;

Nowakowski et al. 2016, 2017, 2018b; Hamblin et al.

2017). To fully assess organismal-temperature rela-

tionships and species’ vulnerability to changing ther-

mal environments, however, requires detailed

information on (1) temperature exposure at fine scales,

(2) variation in thermal traits among individuals, and

(3) the context-dependence of thermal trait measure-

ments, information that is unavailable for most species

(Valladares et al. 2014; Sinclair et al. 2016; Now-

akowski et al. 2018a). Furthermore, any comprehen-

sive assessment of temperature sensitivity must

account for the ability of ectotherms to behaviorally

moderate their exposure to environmental tempera-

tures and, therefore, their realized body temperatures

(Porter et al. 1973; Kearney et al. 2009; Sears et al.

2016; Pincebourde and Casas 2019).

Thermal performance curves (TPCs) provide a

useful framework for understanding organism-tem-

perature relationships and for deriving multiple ther-

mal traits (Huey and Stevenson 1979). TPCs are

models or equations that describe the relationship

between some measure of organismal performance (or

fitness) and temperature. Typically, performance

increases slowly with temperature until it is maximized

at the thermal optimum temperature (Topt). Beyond

Topt, performance often decreases precipitously with

further increase in temperature, giving rise to the

classically left-skewed, empirical TPC (Navas et al.

2008; Sinclair et al. 2016). Though not universal, this

common TPC form may arise as emergent outcomes of

biochemical reactions that are temperature-dependent;

for example, during acute exposure to high tempera-

tures, blood-oxygen concentrations typically decrease

quickly while demand increases (Angilletta Jr and

Angilletta 2009; MacMillan 2019). TPCs are bounded

by critical lower and upper thermal tolerances—

temperatures beyond which performance (or fitness)

is zero and animals cannot function physiologically or

ecologically. One can fit TPCs to a plethora of

performance variables, which can all vary in form

(Angilletta Jr and Angilletta 2009; Sinclair et al. 2016).

However, TPCs are commonly based on movement

performance, likely because temperature-dependent

movement is relatively easy to measure in the labora-

tory using experiments and is linked to proximate

determinants of fitness (Miles et al. 2004).

Although typically measured in a laboratory set-

ting, TPCs can also be constructed from field data

(Payne et al. 2016; Childress and Letcher 2017),

including GPS tracking data. Field-derived TPCs

should provide more ecologically-relevant estimates

of thermal traits than lab-based assays, in which

organisms are prompted to move, because study

organisms can behave under natural conditions, seek-

ing refuge to avoid extreme temperatures while

experiencing additional constraints on performance,

such as food or water limitation. For these reasons, it is

also important to examine the influence of ecological

context, such as season and anthropogenic stressors,

on field-derived thermal traits. Here, we propose using

GPS telemetry data and animal-mounted temperature

sensors to examine field-based TPCs; this method has

the potential to provide information with very high

spatiotemporal resolution on organismal-temperature

relationships and that integrates behavior and perfor-

mance across a range of ecological conditions into

estimates of thermal traits.

Examining the thermal-dependence of movement

performance in the field can be informative for a range

of ecological and conservation applications because
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movement is a fundamental process that is linked to

fitness and that shapes the spatial distributions of

individuals. Constrained by both environmental con-

ditions and evolved, niche-related traits, organisms

presumably optimize their fitness through movement

behavior in heterogeneous landscapes, balancing

predator avoidance and energetic costs with the search

for food, water, and mates (Cushman and Huettmann

2010). Temperature likely plays a key role in modu-

lating these movement behaviors by affecting the

internal state of the organism—e.g., the motivation for

movement—and the biomechanical capacity for

movement (Nathan et al. 2008). By serving as a link

between local-scale behaviors and landscape-scale

distributions, TPCs based on large-scale movement

datasets can serve as a framework for integrating

elements of thermal biology and spatial ecology.

In this study, we used GPS tracking data for a desert

ectotherm, the Mojave Desert Tortoise (Gopherus

agassizii), to examine temperature thresholds and

optima for movement behavior. Specifically, we

generated TPCs based on the relationships between

individual tortoise velocity and external carapace

temperature. We then defined parameters of these

curves, including ecologically optimal temperatures

(ToptE) for movement (Payne et al. 2016; Sinclair et al.

2016); the optimal temperature range or B80—defined

here as the range of temperatures at which perfor-

mance is at least 80% of the maximum (Crowley

1985); and the lower (CTminE) and upper (CTmaxE)

ecological limits of the thermal performance range—

defined here as the temperature thresholds between

which velocity is effectively[ 0, while accounting

for GPS error. We used an altered notation for field-

derived TPC parameters – ToptE, CTminE, and

CTmaxE—to distinguish these thermal traits measured

under natural environmental conditions (following

Payne et al. 2016) from analogous thermal traits that

are typically measured under laboratory conditions

(Sinclair et al. 2016). We then examined the degree of

variation in TPC parameters within and among

individuals, determining whether parameters varied

between sexes, seasons, or when in proximity to

anthropogenic structures (here, roads or road fencing).

Finally, we examined the relationship between fre-

quency of carapace temperatures within the B80 range

and the size of monthly home ranges or the frequency

of high-displacement movement paths. By under-

standing individual variation in temperature-

dependent movement in the field, we may gain new

insights into the responses of species to changing

temperature regimes under habitat alteration and

climate change.

Methods

Study system

The Mojave Desert Tortoise occurs in the Mojave and

Sonoran Deserts of the southwestern United States and

is listed as threatened under the U.S. Endangered

Species Act (Federal Register 1990). The species has

declined in much of its range due to a combination of

threats, including widespread habitat loss from urban-

ization and renewable energy development, road

mortality, and disease. We collected movement data

on desert tortoises in the southern Ivanpah Valley of

the Mojave Desert in California. Tortoises were

tracked at two sites within the valley that were

separated by approximately 11 km (Peaden et al.

2017). One site was within the Mojave National

Preserve and included a two-lane, unfenced road with

low traffic volume. The second site was just west of

Interstate 15, a high traffic volume highway along

which mitigation fencing had been recently installed

to exclude tortoises from roads and construction areas.

GPS telemetry and temperature measurements

During 2013–2015, we tracked a total of 15 individ-

uals (9 males and 6 females) using GPS-loggers,

resulting in 89,068 total locations. All individuals

were initially captured within 1 km of a road and were

fitted with VHF radios, GPS loggers (G30L, Advanced

Telemetry Systems Inc. Isanti, MN), and iButton

temperature loggers (1922L, Maxim Integrated, San

Jose, CA). We only outfitted adult tortoises (midline

carapace length[ 210 mm) with GPS transmitters

and temperature sensors so that the total weight of

affixed equipment did not exceed 6% of the body mass

of each tortoise. The location error of GPS transmitters

was assessed by examining variation in position fixes

at a stationary point. The iButton sensors were affixed

to the first left or right costal scute of each tortoise

using epoxy putty (J-B Weld SteelStik). We covered

sensors with a thin (approx. 2.5 mm) layer of epoxy,

thereby shielding the sensor from direct solar radiation
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that could result in biased temperature measurements.

Because sensors were insulated and affixed to the

carapace, measurements approximate temperatures of

the carapace surface, shielded from direct sun expo-

sure. We also examined the relationship between

temperatures from externally mounted sensors to

operative temperatures using physical models (see

below and supplemental methods). We programmed

the GPS and temperature data loggers to record

tortoise locations and carapace temperatures, respec-

tively, at 15 min intervals for the duration of the

tracking period of each animal (for additional details

of tracking methods, see Peaden et al. 2017). Tortoises

were re-sighted every 1–2 months over the course of

the study to download GPS and temperature data and

to replace batteries of GPS transmitters.

Statistical analyses

To examine variation in thermal traits (i.e., TPC

parameters) and their associations with measures of

movement and space use, we conducted two sets of

analyses: (1) We analyzed variation in thermal traits in

relation to sex, season, and proximity to roads, and (2)

we examined the relationships between the amount of

time tortoises spent within their optimal temperature

range and space use patterns measured as monthly

home range size and the number of days with high-

displacement movement bouts.

We first calculated derived variables from GPS

tracking data to be used in downstream analyses.

These variables included velocity, change in net-

squared displacement (DNSD) for each step, categor-

ical variables representing proximity to roads and

behavioral movement modes based on daily DNSD,

and monthly home range size. Velocity was calculated

as the step length between GPS fixes divided by the

time interval between fixes; often, this interval was

15 min but was longer in cases when GPS loggers

failed to acquire a fix (e.g., when tortoises were in

burrows). We calculated net-squared displacement as

the squared straight-line distance between the starting

point of an individual’s movement track—a track is

the entire sequence of locations obtained from the GPS

transmitter—and each consecutive location on the

landscape (Fig. 1a) (Börger and Fryxell 2012). Net-

squared displacement provides a measure of roaming

behavior because it represents the spatial diffusion of

an individual from a fixed starting location. Because

NSD values are relative to an arbitrary starting point

(here the first point of each track), we calculated

absolute differences in NSD between serial loca-

tions—DNSD—for further analyses of high-displace-

ment movements. We then classified movement tracks

into three segment types representing different move-

ment modes: sedentary activity, normal movement,

and bouts of directed, high-displacement movement.

To categorize sedentary activity and bouts of directed

movement, we used simple thresholds corresponding

to the 10th (= low displacement) and 90th (= high

displacement) percentiles of summed daily DNSD to

identify path segments (Fig. 1b) (Edelhoff et al. 2016).

We also derived categorical predictor variables repre-

senting season based on rainfall—Spring/Summer

(March–June) versus Monsoon season (July to

November)—and a binary categorical variable repre-

senting proximity to a road—tortoise loca-

tions B 20 m of a road (or road fence) were

classified as being in close proximity to a road (as in

Peaden et al. 2017). For analysis of variation in

monthly home range size, we calculated 100% min-

imum convex polygons (MCPs) for each individual

tortoise, for each month, using the adehabitatHR

package in R (Fig. 1c; R Core Team 2018; Calenge

2019).

To estimate TPC parameters for each tortoise, we fit

general additive models (GAMs) with loess smoother

functions in which carapace temperature was the

predictor and the 95th percentile of velocity at each

1-degree Celsius carapace temperature was the

response variable. We fit curves to the 95th percentile

of velocity at each temperature because we wanted to

characterize the upper capacity for movement perfor-

mance (here velocity) while avoiding the influence of

outliers. We did not fit curves to all points because this

includes many points during sedentary periods in

which the animal was not motivated to move. We used

GAMs, as opposed to comparing alternative paramet-

ric functions (e.g., Gaussian vs quadratic; Angilletta

Jr. 2006), because this approach allows us to flexibly

model nonlinear relationships, asymmetries in curves,

and variation and irregularities among individuals

(Zajitschek et al. 2012; Gilbert and Lattanzio 2016).

We defined the optimum temperature for movement

(Topt) as the temperature associated with the maximum

predicted velocity from GAMs fit for each individual

tortoise. The optimal temperature range (B80) was

then identified from the lower and upper temperatures
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at which velocity was 80% of the maximum predicted

value (Crowley 1985). We defined the ecological

lower (CTminE) and upper (CTmaxE) limits of the

thermal performance range as the lower and upper

temperatures thresholds at which predicted velocity is

indistinguishable from zero (Sinclair et al. 2016), after

accounting for GPS error. Rather than defining CTminE

and CTmaxE where velocity intersects with 0, we used a

threshold of 0.56 m/min that accounts for the mean

GPS position error for the study. We fit individual

TPCs for the entire study period as well as by season

and by whether tortoises were in close proximity to

roads. We also fit a TPC to the 95th percentile of mean

monthly home range size (across individuals) with

each 1-degree Celsius change in mean monthly

carapace temperature.

We determined whether TPC parameters varied by

sex, season, and proximity to roads by fitting linear

mixed models (LMMs) with individual ID as a varying

intercept. To examine the effect of season on each

parameter, including ToptE, B80, CTminE, and CTmaxE,

we fit an intercept-only model, a model with season,

and both additive and interactive models with season

and sex as fixed effects. We then compared these

models using Akaike’s Information Criterion cor-

rected for small sample sizes (AICc). To examine the

effect of road proximity on each parameter, we again

fit an intercept-only model, a model with road

proximity, a model with sex, and both additive and

interactive models with road proximity and sex as

fixed effects and compared these models using AICc.

We also examined whether using estimates of core,

operative temperatures might alter model selection.

Specifically, we estimated the mean relationship

between external carapace and internal operative

temperatures using measurements of physical models

(Hertz et al. 1993; Sieg et al. 2015) and then re-fit

LMMs as described above but with each physical

model as a random intercept (see SI methods; Fig S1).

The objective of this supplemental analysis was not to

precisely estimate core body temperatures but to

examine the potential sensitivity of our main results—

using external, carapace temperatures—to other tem-

perature measurements, such as operative

temperatures.

We then analyzed variation in monthly home range

size using LMMs with individual ID as a varying

intercept. To normalize home range size, we calcu-

lated the square root of this variable. To ask whether

carapace temperatures within B80 range affect space-

use at larger scales and whether this effect depends on

season or sex, we first fit an intercept-only model;

then, we fit models individually with season, sex, and

the proportion of monthly GPS fixes that were

associated with temperatures within the mean B80

range across all individuals (29–40 �C; hereafter,

‘time at B80’), as well as the interaction between

season and time at B80 and sex and time at B80. We

Fig. 1 a An example movement track for an individual tortoise

with points colored by net squared displacement (NSD).

b Segmentation of movement track for an individual tortoise

with points colored by movement mode, calculated as the 10th

(= low) and 90th (= high) percentiles of daily summed DNSD.

c Monthly home ranges, measured as 100% minimum convex

polygons (MCPs) for an individual tortoise. Light grey points

and lines depict movement track from 2013 and dark grey

depicts movement track from 2014. Only monthly MCPs from

2014 are shown
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also fit an ad hoc model to examine the relationship

between mean monthly velocity, using all data points,

and time at B80. Last, we analyzed the frequency of

days during each month in which tortoises made long-

distance, directed movements (as determined by path

segmentation described above) using generalized

linear mixed models (GLMMs) with a Poisson prob-

ability distribution and individual ID as a varying

intercept. We fit the same set of models, in terms of

fixed effects and random effects, as in the analysis of

home range size described above and again compared

competing models using AICc.

Results

The final dataset used to develop TPCs and analyze

space use patterns included a mean of 5,938 locations

per tortoise. The frequency of GPS fixes on tortoise

locations varied across months, with highest frequen-

cies in early spring and during the Monsoon season

(Fig S2). We obtained lowest frequencies of fixes

during June and November when tortoises were likely

seeking refuge in burrows during dry periods and low

temperatures, respectively. There was a seasonal shift

in movement mode, from increased frequency of low

displacement (or sedentary) movement activity in the

spring to increased frequency of high displacement (or

long-distance, directed) movements in the Monsoon

season (Fig S2). Mean home range size also varied

considerably across months and between seasons

(Fig. S3), ranging from 0.02 to 133.9 ha

(mean = 20.3 ha).

We found that TPCs for most individuals exhibited

a characteristic left-skewed form (Fig. 2a). Notably,

CTmaxE was quite consistent among individuals

(mean = 42.8 �C; SD = 1.4); other TPC parameters,

however, exhibited greater intraspecific variation,

including the B80 range (mean = 11.2 �C; SD = 4.0),

ToptE (mean = 36.0 �C; SD = 3.3), and CTminE

(mean = 12.4 �C; SD = 4.5). We found that TPCs

for the 95th percentile of monthly home range size also

exhibited a characteristic left-skewed form (Fig. 2b).

Based on LMMs, we found statistical support for

context-dependence of TPC parameters based on step

velocity with respect to season, sex, or proximity to

roads (Tables 1 and 2). For ToptE, the best supported

models indicated that this parameter was lower in the

Spring/Summer than during the Monsoon season

(b = - 3.23, SE = 1.26, P = 0.010) and was also

lower when animals were in close proximity to roads

(b = - 4.161, SE = 1.16, P\ 0.001). The best sup-

ported model with B80 as the response indicated that

the optimal temperature range, B80, was significantly

narrower during the Spring/Summer than the Mon-

soon season (b = - 2.62, SE = 1.18, P = 0.026) and

was also narrower in male than in female tortoises

(b = - 3.17, SE = 1.19, P = 0.008); B80 was not

affected by proximity to roads. CTminE did not differ

between seasons but was significantly greater when

animals were in close proximity to roads (b = 6.65,

SE = 1.59, P\ 0.001; Fig. 3). When examining the

effect of season on the upper thermal tolerance based

on velocity, the best supported model included

additive effects of season and sex, showing that

CTmaxE for movement activity was lower in the

Fig. 2 Left-skewed thermal performance curves (TPCs) are

apparent at two spatio-temporal scales. a TPCs fit to the 95th

percentile of step velocity across temperatures using GPS

tracking data and animal mounted temperature sensors. Grey

lines show individual tortoise TPCs and the blue line shows the

mean TPC fit to data for all tortoises. Vertical dashed lines

indicate the mean CTminE (purple), CTmaxE (red), ToptE (orange),

and B80 range (grey). b TPC fit to the 95th percentile of monthly

home range size—calculated here as the square root of the 100%

MCP (ha)
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Spring/Summer than in the Monsoon season

(b = - 1.31, SE = 0.43, P = 0.002) and was also

lower in males than females (b = - 1.35, SE = 0.54,

P = 0.013). When examining the effect of roads,

CTmaxE was lower when tortoises were in close

proximity to roads (b = - 2.15, SE = 0.54,

P\ 0.001) and again, was lower for males than

females (b = - 1.56, SE = 0.63, P = 0.013; Fig. 3).

Our analyses of thermal trait variation based on

predicted core body temperatures, using physical

models, were consistent with those based on carapace

temperatures (Tables S1 and S2).

In our analysis of the effect of time at B80 on

monthly home range size and the potential depen-

dency of this effect on sex or season, the best

supported model included the interaction between

time at B80 and season (bB80 = 7.88, SE = 1.48,

P\ 0.001, bSeason = 1.26, SE = 1.23, P\ 0.001,

bB80 xSeason = - 5.67, SE = 2.24, P\ 0.001, RLR
2-

= 0.25; Table 3). Monthly home range size (100%

MCP) increased with increasing time that each tortoise

spent within the optimal temperature range, B80;

however, the slope of the B80 effect was significantly

greater during the Monsoon season than during the

Table 1 Comparisons of linear mixed models evaluating the

effects of season and sex on thermal traits of the Mojave Desert

Tortoise

Trait Seasonal effects on thermal traits DAICc P

Model df AICc

ToptE * Intercept 3 159.6462 3.187

ToptE ~ Season 4 156.4593 0.000 0.015

ToptE * Season ? Sex 5 159.4473 2.988 0.052

ToptE * Season * Sex 6 162.6933 6.234 0.114

B80 * Intercept 3 160.151 4.259

B80 * Season 4 159.1986 3.306 0.011

B80 ~ Season 1 Sex 5 155.8924 0.000 0.007

B80 * Season * Sex 6 158.7762 2.884 0.016

CTminE ~ Intercept 3 171.145 0.000

CTminE * Season 4 172.449 1.304 0.231

CTminE * Season ? Sex 5 175.392 4.247 0.477

CTminE * Season * Sex 6 178.560 7.415 0.663

CTmaxE * Intercept 3 112.085 6.515

CTmaxE * Season 4 107.658 2.088 0.007

CTmaxE ~ Season 1 Sex 5 105.570 0.000 0.002

CTmaxE * Season * Sex 6 105.879 0.309 0.002

Thermal traits were derived from thermal performance curves

based on desert tortoise field movements and include

ecologically optimal temperature (ToptE), optimal temperature

range (B80), ecologically critical thermal minimum (CTminE),

and critical thermal maximum (CTmaxE) for movement activity.

Some thermal traits varied according to season and sex; for

example, ToptE and CTmaxE were lower in the Spring/Summer

than in the Monsoon season, and CTmaxE was lower in males

than in females. Best supported models for each trait, based on

Akaike’s Information Criterion corrected for small sample size

(AICc), are in bold. We also report model degrees of freedom

(df), change in AICc from lowest AICc value (DAICc), and P-

values

Table 2 Comparisons of linear mixed models evaluating the

effects of landscape context (road proximity) and sex on

thermal traits of the Mojave Desert Tortoise

Trait Road effects on thermal traits DAIC P

Model df AIC

ToptE * Intercept 3 144.5763 5.944

ToptE ~ Road 4 138.6319 0.000 0.003

ToptE * Road ? Sex 5 141.6455 3.014 0.011

ToptE * Road * Sex 6 144.5994 5.968 0.023

B80 ~ Intercept 3 150.6239 0.000

B80 * Road 4 152.087 1.463 0.238

B80 * Road ? Sex 5 153.5251 2.901 0.211

B80 * Road * Sex 6 155.8933 5.269 0.235

CTminE * Intercept 3 159.3734 10.365

CTminE ~ Road 4 149.0082 0.000 < 0.001

CTminE * Road ? Sex 5 152.1413 3.133 0.001

CTminE * Road * Sex 6 155.6026 6.594 0.004

CTmaxE * Intercept 3 108.3274 7.004

CTmaxE * Road 4 103.5289 2.205 0.006

CTmaxE ~ Road 1 Sex 5 101.3239 0.000 0.001

CTmaxE * Road * Sex 6 104.740 3.416 0.004

Thermal traits were derived from thermal performance curves

based on desert tortoise field movements and include

ecologically optimal temperatures (ToptE), optimal

temperature range (B80), ecologically critical thermal

minimum (CTminE), and critical thermal maximum (CTmaxE)

for movement activity. Some thermal traits varied according to

landscape context (proximity to a road) and sex; for example,

tortoises exhibited greater CTminE and lower CTmaxE when near

roads, and males had lower CTmaxE than females, on average.

Best supported models for each trait, based on Akaike’s

Information Criterion corrected for small sample size (AICc),

are in bold. We also report model degrees of freedom (df),

change in AICc from lowest AICc value (DAICc), and P-

values
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Spring/Summer (low-rainfall months; Fig. 4a). In our

analysis of the effect of time at B80 on frequency of

high-displacement movements and the potential

dependency of this effect on sex or season, the best

supported model again included the interaction

between time at B80 and season (bB80 = 4.16, SE =

0.76, P\ 0.001, bSeason = 0.228, SE = 0.733,

P = 0.756, bB80 xSeason = -.27, SE = 1.23,

P = 0.065, RLR
2 = 0.42; Table 3). The number of

days each month during which tortoises made high-

displacement movements increased with increasing

proportion of fixes that were within the optimal

temperature range (B80). Again, however, this effect

depended on season, though the interaction was

marginally non-significant, with temperature effects

on movement being greater during the Monsoon

season when water from rainfall is less limited in this

part of the Mojave Desert (Fig. 4b).

Discussion

As climate change and habitat alteration create novel

thermal environments, predicting species responses to

these threats will hinge on understanding temperature

exposure at fine spatial and temporal scales, variation

among individuals in key thermal traits, and the

dependence of intraspecific trait variation on environ-

mental factors. This intraspecific variation may indi-

cate both plasticity of thermal traits and the amount of

raw material for natural selection, serving as a

foundation for studies of adaptive capacity and for

Fig. 3 Results indicate that thermal traits are dependent upon

ecological context, here proximity to roads. When near roads,

tortoises tend to exhibit greater CTminE (a) and lower CTmaxE

(b). On average, females had greater CTmaxE than males while

CTminE did not differ between sexes

Table 3 Comparisons of models evaluating the effects of time spent within the optimal temperature range (B80), and interactions of

B80 with season and sex, on space use variables for the Mojave Desert Tortoise

Space-use variable Model df AIC DAIC P

HR size (100% MCP) * Intercept 3 710.0025 36.931

HR size (100% MCP) * Sex 4 707.230 34.158 0.027

HR size (100% MCP) * Season 4 696.0843 23.012 \ 0.001

HR size (100% MCP) * B80 4 698.1612 25.089 \ 0.001

HR size (100% MCP) * B80*Sex 6 694.7559 21.684 \ 0.001

HR size (100% MCP) ~ B80*Season 6 673.072 0.000 < 0.001

Days with long-distance movements * Intercept 3 538.0114 73.510

Days with long-distance movements * Sex 4 538.3261 73.825 0.184

Days with long-distance movements * Season 4 501.697 37.195 \ 0.001

Days with long-distance movements * B80 4 512.629 48.127 \ 0.001

Days with long-distance movements * B80*Sex 6 505.864 41.363 \ 0.001

Days with long-distance movements ~ B80*Season 6 464.501 0.000 < 0.001

The interaction between time spent at B80 and season best explained both monthly variation in home range size and frequency of

days with long-distance movements (also see Fig. 4). To evaluate variation in monthly home range size (100% MCP), we fit linear

mixed models with tortoise ID as a varying intercept. To evaluate frequency of days with high-displacement movements, we fit

generalized linear mixed models with a Poisson probability distribution and tortoise ID as a varying intercept. Best supported models

for each space-use variable, based on Akaike’s Information Criterion corrected for small sample size (AICc), are in bold. We also

report model degrees of freedom (df), change in AICc from lowest AICc value (DAICc), and P-values

FIGURES
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predicting species responses under changing thermal

environments. Here we show that GPS tracking data

and animal-mounted temperature sensors generate

data with high-spatiotemporal resolution from which

we can readily characterize individual TPCs based on

movements in the field. These TPCs allow us to

characterize thermal trait variation among individuals

and ecological contexts, and therefore, will be useful

for management and conservation under changing

thermal environments.

There are several advantages and limitations of

field-derived TPCs from GPS data. The high-resolu-

tion data obtained through GPS transmitters and

animal-mounted temperature sensors enable us to

characterize (1) an organism’s ToptE—an important

thermal trait for assessing vulnerability to climate

change but one that is rarely available (Huey et al.

2012), (2) intraspecific variation of thermal traits, and

(3) dependence of thermal traits on individual and

ecological covariates. This level of detail allows us to

readily address questions, such as how thermal traits

vary within or among individuals, across seasons,

years, and habitats, that are not as easily studied with

laboratory-measured TPCs or those based on popula-

tion parameters (Sinclair et al. 2016). For example,

addressing questions about how thermal traits of

individuals vary across seasons, years, and habitats in

the lab would require recapturing, transporting, and

housing individuals multiple times and measuring

traits under laboratory conditions, where their behav-

ior is likely to differ from that in natural environments.

Moreover, TPCs from GPS telemetry can produce

estimates of thermal traits that are more ecologically-

relevant than many experimental approaches; exper-

imentally-measured TPCs may underestimate species’

thermal sensitivity because they typically do not

integrate constraints on movement performance

imposed by animal behavior and other limiting factors

(e.g., food availability, precipitation, and biotic inter-

actions), which can vary across time and space.

Parameters of field derived TPCs, therefore, can be

considered more conceptually aligned with the real-

ized thermal niche (Araújo et al. 2013; Gvoždı́k 2018).

In contrast, TPCs from laboratory assays usually

control for motivation—for example, by prodding

animals—and external factors to measure maximum

potential movement performance at each temperature;

estimates from laboratory assays are, therefore, con-

ceptually aligned with the fundamental thermal niche

(Kearney & Porter 2004; Araújo et al. 2013; Gvoždı́k

2018; Nowakowski et al. 2018a). Conversely, some of

the advantages of field-derived TPCs may also be

considered limitations under certain research contexts,

such as when it is important to control for or

manipulate movement stimuli and ecological factors

to isolate causal mechanisms. As with all applications

Fig. 4 Measures of space use increased with the amount of time

tortoises spent within their optimum temperature range; the rate

of increase was greater during the Monsoon season, indicating

that rainfall is a limiting factor that modifies temperature-space

use relationships. a Predicted monthly home range size (100%

MCP) with increasing amount of time tortoises spent within the

optimal temperature range (B80). Model predictions are from a

linear mixed model with tortoise ID as a varying intercept.

b Predicted frequency of high-displacement movements with

increasing amount of time tortoises spent within the B80 range.

Model predictions are from a generalize linear mixed model

with Poisson probability distribution and tortoise ID as a varying

intercept
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of GPS tracking, development of TPCs is limited to

animals that are large enough to accommodate the size

of GPS transmitters or similar high-resolution tracking

devices, which currently may exclude many small-

bodied species. Field-derived TPCs can, however,

facilitate measurements of thermal traits for species

that are difficult to work with in a laboratory setting,

such as very large-bodied species, or for species under

strict use regulations, such as threatened and endan-

gered species like the Mojave Desert Tortoise.

Using field-derived TPCs for the Mojave Desert

Tortoise, we quantified individual-level variation in

multiple thermal traits, with some traits exhibiting a

high level of concordance among tortoises while

others exhibited greater intraspecific variation. We

found that, across the entire tracking period, desert

tortoises had characteristic, left-skewed TPCs with a

mean ToptE for movement of 36.0 �C and a SD of

3.26 �C; as carapace temperatures decreased from

mean ToptE, movement performance gradually

decreased toward zero (plus mean GPS error), reach-

ing a mean CTminE of 12.4 �C (SD = 4.5 �C). As

carapace temperatures exceeded ToptE, movement

performance decreased precipitously until reaching a

CTmaxE of 42.8 �C (SD = 1.35 �C; Table 1, Fig. 2a).

Our field-derived measure of CTmaxE from GPS data is

similar to previous estimates for the Mojave Desert

Tortoise (43.1 �C) and other tortoise species

(42.5–44.0 �C) based on laboratory assays (Hutchison

et al. 1966). A key difference in these measurements,

however, is that CTmaxE in this study reflects the

carapace temperature at the upper limit of movement

performance in the field; whereas, laboratory esti-

mates reflected the core body temperatures at which

tortoises exhibited the onset of spasms and, therefore,

these measurements have different ecological inter-

pretations. For example, our CTmaxE estimate repre-

sents a behavioral threshold with ecological

consequences because it limits opportunities to forage

and reproduce. This cessation of activity is likely a

behavioral mechanism for avoiding physiological

consequences of acute thermal stress that can result

from core temperatures reaching * 43 �C (Hutchison

et al. 1966)—core body temperatures of large-bodied

tortoises increase more slowly than carapace temper-

atures due to thermal inertia (Fig. S1).

Our estimate of CTmaxE also exhibited lower

variation among individuals compared to other ther-

mal traits like CTminE, a pattern that is generally

consistent with multiple ectothermic vertebrates for

which CTmin and CTmax have been measured in the lab

(Araújo et al. 2013; Muñoz and Bodensteiner 2019).

Low overall standing variation in CTmaxE suggests that

there is limited potential for directional selection to

increase CTmaxE under warming climatic conditions

(Grigg and Buckley 2013; Hoffmann et al. 2013;

Muñoz and Bodensteiner 2019). Additional molecular

studies are needed, however, to further evaluate this

inference. Other thermal traits, including ToptE, B80

range, and CTminE were more variable among indi-

viduals. These traits, therefore, appear to be more

labile, potentially because they are governed by

different physiological mechanisms (MacMillan

2019), and are possibly subject to greater shifts due

to acclimation or selection (Clusella-Trullas and

Chown 2014; von May et al. 2017; Muñoz and

Bodensteiner 2019).

The parameters of individual TPCs varied by sex,

season, and when in close proximity to roads (Tables 1,

2; Fig. 3). For example, the optimal temperature range

of individual tortoises, B80, was narrower and ToptE

was lower during the dry season than the monsoon

season. During months when precipitation is scarce

and thus water is limiting, tortoises may move less and

under cooler conditions to maintain lower metabolic

rates (i.e., expend less energy) and conserve water

during months when precipitation is scarce. Desert

tortoises experience a net loss of energy and negative

water balance during much of the dry season, which is

recouped only after heavy rains and increased foraging

in the fall months (Nagy and Medica 1986; Peterson

1996). We also found that the CTminE and CTmaxE for

movement performance were higher and lower,

respectively, when tortoises were in close proximity

to roads, decreasing the overall performance breadth

of tortoises. This result may be due to changes in

behavioral motivation for movement when tortoises

are near roads. Our working hypotheses, based on field

observations, are that (1) tortoises use roads and road

margins for thermoregulation, (2) to drink water that

collects on roads after rains, or (3) to forage along road

margins where vegetation is often dense (Peaden et al.

2017), all of which are behaviors that involve reduced

movement. Alternatively, tortoises may reduce activ-

ity near roads to avoid risks associated with roads,

such as thermal stress, vehicles, and predators. More

broadly, the context-dependence of the thermal traits

reported here underscores the need to evaluate
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simplifying assumptions that are frequently made

when using thermal traits to predict species responses

to climate change (Sinclair et al. 2016). Studies often

assume, for example, that thermal traits vary little

within species, are independent of organismal state

(e.g., disease or nutrition status), or are invariant

across environmental gradients (Deutsch et al. 2008;

Sunday et al. 2014; Nowakowski et al. 2017; see

assumptions 2, 3, 10 and 11 of Sinclair et al. 2016).

This study and other studies have shown that these

assumptions often do not hold (Richter-Boix et al.

2015; Llewelyn et al. 2016; Rivera-Ordonez et al.

2019).

We found that temperature-dependence of fine-

scale movement behavior—velocity of individual

steps—scales to predict space use and movement

patterns at larger spatial extents. Specifically, the

relative amount of time tortoises spent within their

B80 range was positively associated with both

monthly home range size and frequency of high-

displacement movement paths. Interestingly, there

was not a strong relationship between mean monthly

velocity (using all data points) and time at B80 (RLR
2-

= 0.11), suggesting that large-scale space use and

movement patterns emerge from other movement

characteristics in addition to high velocity; for exam-

ple, roaming behavior may be temperature-dependent

and occur at moderate or low velocities. However, the

effect of time at B80 depended on a second limiting

factor, precipitation, such that both home range size

and frequency of high-displacement movements

increased at a greater rate during months with more

rainfall. Previous work shows that field metabolic rate,

foraging rates, activity, and home range size of desert

tortoises are seasonally variable and appear to be

limited, at least in part, by water availability (Peterson

1996; Duda et al. 1999; Agha et al. 2015; Peaden et al.

2017). Finally, the relationship between the 95th

percentile of monthly home range size and mean

monthly carapace temperature also produced a char-

acteristic, left-skewed TPC (Fig. 2b). This result adds

to other empirical examples that suggest temperature-

dependent biophysical mechanisms often generate

left-skewed performance curves at several biological

scales, ranging from an ectotherm’s heart rate (Sinclair

et al. 2016), to whole-organism movement perfor-

mance (Navas et al. 2008), to space use patterns across

an entire year (this study), to population growth rates

(Huey and Berrigan 2001; Deutsch et al. 2008).

Temperature determines the rates of biochemical

reactions, serves as a metabolic constraint, and often

has an outsized effect on ecological parameters for

both ectotherms and endotherms, including movement

(Huey and Stevenson 1979; Angilletta Jr. et al. 2007;

Angilletta Jr. and Angilletta 2009; Dillon et al. 2010;

Nowakowski et al. 2013; Nowakowski et al. 2015;

Frishkoff et al. 2019). The responses of animal

populations to rapidly changing thermal environments

will be shaped by their temperature exposure, which is

determined by local microclimates and behavior, and

their temperature sensitivity, which is governed by

evolved thermal traits (Todd and Andrews 2008;

Kearney et al. 2009; Huey et al. 2012; Scheffers et al.

2014). TPCs based on GPS telemetry provide a useful

means for measuring thermal traits in the field,

generating fine-scale data with which to assess

intraspecific variation and the dependence of traits

on ecological context. Here, for example, we found

that the home range size and frequency of high-

displacement movements of Mojave Desert Tortoises

increased with the amount of time tortoises spent at

optimal temperatures; however, this effect was only

apparent during months when rainfall was more

abundant. We also observed that tortoises had lower

variation in CTmaxE than other thermal traits, suggest-

ing that there may be limited potential for tortoises to

adapt to warming climate conditions through selective

shifts in thermal tolerances. Other factors, however,

such as changes in behaviors like activity timing or

migration to cooler habitats may represent additional

adaptive pathways in response to warming climate.

Notably, field estimates of thermal traits integrate the

animal’s ability to behaviorally thermoregulate, their

prior temperature exposure (i.e., acclimation history),

and their state-dependent motivation for movement

under natural conditions. Laboratory-based methods

may underestimate thermal sensitivity if conducted

under idealized conditions (e.g., ad libitum feeding)

and do not test for effects of other limiting factors on

traits, such as the nutrition, hydration, infection status,

and heat-avoidance behavior of animals (Sinclair et al.

2016; Greenspan et al. 2017). Field-derived TPCs

should be useful in future studies for understanding the

capacity of organisms to locally adapt to changing

microclimates (especially when combined with

molecular methods) (Llewelyn et al. 2016), for

assessing connectivity in heterogeneous thermal land-

scapes (Rothermel and Semlitsch 2002; Nowakowski
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et al. 2015; Watling and Braga 2015), and by

extension, for predicting the ability of organisms to

track their climatic niche and shift their distributions

under climate change (Bonebrake et al. 2017; Now-

akowski et al. 2018a). Because movement contributes

to the spatial distributions of genes, individuals, and

species, TPCs based on movements in changing

thermal landscapes can serve as a framework for

integrating concepts across disciplines and for improv-

ing management of populations under climate change.
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